EMA-11N

Network analyzer
with basic power quality analysis

Conntrel eletronica sul

Information in this document is subject to change without notice and does not represent a commitment on the part of Megacon. This documentation is consigned to the customer to enable the correct and safe operation of the instrument; any other use of documentation is strictly prohibited.
The information contained herein is the property of Megacon, and by law, no part of it may be reproduced, transcribed, stored in any retrieval system, or translated into any language by means (even for internal purposes by the customer) without the express written permission of Megacon.
In addition, no part of this manual may be transmitted in any form by any means, including photocopying and recording, for any purposes, without the express written permission of Megacon. In case of Copyright violation the customer is directly responsible.

TERMS OF WARRANTY

The warranty is valid for the period of 24 months after material receipt.
The warranty covers free repair or replacement of equipment parts, which are recognized as faulty due to manufacturing defects.
Warranty does not cover those parts which results defective due to misuse or improper use, incorrect installation or maintenance, operation by unauthorized personnel, damage during transportation, or which in any case do not show manufacturing defects of the equipment.
Not included in the warranty terms are technical interventions regarding equipment installation to electrical systems.
The manufacturer declines any responsibility for eventual injury or damage to persons, animals or things as result of failure to follow the instructions in the user manual or caused by improper use of equipment.
The expenses of transport as well as the relative risks of same both to and from the place of repair, will be the sole responsibility of the user.
This warranty expires after the date of purchase and any assistance required after said date including spare parts, labour, transport of personnel and material will be charged to the user following the tariffs in force for Technical Assistance Service at the time of such requested service.
In any case the replacement of the equipment as well as the extension of warranty after such breakdown is excluded.

Safety information

Important information

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

Please note

Electrical equipment should be installed, operated, serviced and maintained only by qualified personnel. No responsibility is assumed by Contrel elettronica for any consequences arising out of the use of this material.
A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

Document scope

This manual is intended for use by designers, system builders and maintenance technicians with an understanding of electrical distribution systems and monitoring devices.

Safety precautions
Installation, wiring, testing and service must be performed in accordance with all local and national electrical codes. Carefully read and follow the safety precautions outlined below.

DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION

- Apply appropriate personal protective equipment and follow safe electrical work practices.
- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying this device and the equipment in which it is installed before working on the device or equipment.
- Always use a properly rated voltage sensing device to confirm power is off.
- Before performing visual inspections, tests, or maintenance on this equipment, disconnect all sources of electric power. Assume that all circuits are live until they have been completely de-energized, tested and tagged. Pay particular attention to the design of the power system. Consider all power supply sources, particularly the potential for back-feed.
- Do not exceed the device's ratings for maximum limits.
- Never short the secondary of a voltage transformer (VT).
- Never open circuit a current transformer (CT).

Failure to follow these instructions will result in death or serious injury.

UNINTENDED OPERATION
Do not use the meter for critical control or protection applications where human or equipment safety relies on the operation of the control circuit. Failure to follow these instructions can result in death, serious injury or equipment damage.

Description

The power meter measures currents and voltages and reports real-time RMS values for all 3-phases and neutral. In addition, the power meter calculates power factor, real power, reactive power, and more.
The product functions of power meters provide the various measurement capabilities required to monitor an electrical installation with basic power quality analysis (THD, harmonic analysis up to $63^{\text {rd }}$ order).
The key features are:

- flush-mount housing, 144×144 mm
- true RMS measurements
- high accuracy
- easy and fast navigation
- electrical parameters monitoring such as I, In, U, V, PQS, E, PF, Hz
- power/current demand, peak demand
- basic power quality analysis (THD, harmonics up to 63rd order, dip, swell, interrupts)
- waveforms V, I
- advanced programmable I/O functions
- log memory
- minimum/maximum values for many parameters
- management of up to 16 timebands
- up to 2 digital inputs and 2 digital outputs
- up to 4 analog outputs
- Modbus, ModbusTCP, Profibus, M-Bus communication

The following table lists the metering characteristics of the power meter for the measurement:

	Real-Time	Relative Min/Max	Absolute Min/Max	AVG	Max Demand	Graphics
Voltage L-N	-	\bullet	\bullet	\bullet	\bullet	\bullet
Voltage L-L	\bullet	\bullet	\bullet			
Current	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
PF	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Cos Phi	\bullet	\bullet	\bullet	\bullet	\bullet	
Tan Phi	\bullet	\bullet	\bullet	\bullet	\bullet	
Crest factor	\bullet	\bullet	\bullet			
Active power	\bullet	\bullet	\bullet	-	\bullet	\bullet
Reactive power	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Apparent power	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
Frequency	\bullet	\bullet	\bullet	\bullet		
THD V \& A	\bullet					
Harmonics	\bullet					\bullet
Counters	\bullet					
Expected power	\bullet					

Standard configuration

Power supply	$90 \ldots .250$ VAC/DC
Current inputs	1 A or 5 A (Requires $\times / 5 \mathrm{~A}$ or $\mathrm{x} / 1 \mathrm{~A}$ current transformers)
Measurement accuracy	Class 1 (Active energy)
Digital I/O	2 Digital outputs (photo-mos)
Modbus RS-485	Number of ports: 1
Basic Power Quality	Not available

Additional resources

Power supply	20... 60 VAC/DC			
Current inputs	1 A or $5 \mathrm{~A}+$ Neutral	Rogowski	Rogowski + Neutral	TT / TTA
Measurement accuracy	Class 0,5S		Class 0,2S	
1/0	2 Digital outputs 2 Digital inputs	2 Digital outputs 2 Analog outputs	2 Digital outputs 4 Analog outputs	2 Digital outputs 2 Digital inputs 4 Analog outputs
Communication	Number of RS-485 ports: 2	Modbus RS-485 Mobus TCP	Modbus RS-485 Profibus	Modbus RS-485 M-Bus
Basic Power Quality	H option $\mathrm{H}+$ option			

H option	Waveforms, Harmonics up to 63rd order, DIP/Swell
H+ option	Waveforms, Harmonics up to 63rd order, DIP/Swell, Interrupts (V)

1	Alarm and energy pulsing LED
2	Cancellation key
3	Up key
4	Down key
5	Left key
6	Right key
7	Confirmation key and menu
8	Power ON and energy pulsing LED
9	Display

Startup (first time and at every system reset)

To start up the device, you must specify the operating parameters listed below in the device settings:
Steps for starting up the device

1. Apply the supply voltage
2. Parameterizing the device
2.1 Language selection (set the language in which the display text is to appear)
2.2 Type of wiring connection
2.3 CT primary
2.4 CT secondary
2.5 CT Neutral primary
2.6 CT Neutral secondary
2.7 VT primary
2.8 VT secondary
2.9 Date and time
3. Apply the measuring voltage
4. Apply the measuring current
5. Check the displayed measured values

NOTICE

Check the connections

Incorrect connection can result in malfunctions and failure of the device. Before starting up the EMA-11N, check that all connections are correct.

Device interface

The general display of the power meters is shown in the following picture:

Display: Display - Display title - Key labelling
The display is structured as follows:

- Display area - represents the real-time measured values, min/max/avg/max demand values, graphics, device settings and selection menus.
- Header area - specifies the information visible in the display area.
- Footer area - specifies the functions assigned to the function keys.

Function keys: Key labelling - Key surfaces
The six function keys enable operator input to the device:

- Navigation in the menus
- Selection of the measured value displays
- Selection of the measured visualization type (numbers, trends, waveform, harmonics, analogical mode)

The keys have multiple assignments. Function assignments and key labelling change according to the context of operator input. The designation of the current key function can be seen above the key number in the footer area of the display.

Harmonic analysis page

- The EMA-11N provides the harmonic analysis up to the 63rd order of the followings measurements:
- phase-to-phase voltages
- phase-to-neutral voltages
- currents
- For each of these measurements, there is a display page that graphically represents the harmonic content through a bar graph.
- Every column is related to one harmonic order, even and odd.
- Every histogram represents each phase L1, L2, L3
- The value of harmonic content is expressed as a percentage.
- It is possible to show the harmonic content in numeric format, pressing $\leftarrow \rightarrow$ keys
- The vertical scale of the graph is automatically selected among full-scale values, depending on te column with the highest value.

Waveforms page

This page graphically views the waveform of the voltage and current signal reads by the EMA-11N.

- It is possible to see one phase at a time or 3-phase, selecting it with $\leftarrow \rightarrow$ keys.
- The vertical scale is automatically scaled in order to fit the waveform on the screen.

Energy meters page

Each energy meter page shows the following meters simultaneously:

- active energy Imported, total and each phase L1, L2, L3 meters
- active energy Exported, total and each phase L1, L2, L3 meters
- reactive energy Imported, total and each phase L1, L2, L3 meters
- reactive energy Exported, total and each phase L1, L2, L3 meters
- reactive energy each quadrant (1...4), total and each phase L1, L2, L3 meters
- apparent energy, total and each phase L1, L2, L3 meters
- net energy
- Pressing $\leftarrow \rightarrow$ keys, the display moves to sub-page with timeband meters.
- To clear energy meters, it's necessary to access the commands menu.

Energies and Counters

- For the Energy billing, the EMA-11N can manage 16 different timebands in addition to the total Energy meters.
- The timebands selection is made by external digital inputs or through the dedicated command via communication protocol or internal preset mode.
- In preset control mode, the tariff switching is triggered by the real-time clock. The schedule modes for preset are:
- Daily mode
- Period mode
- Holiday mode
- The preload energy values will be added to the energy meters.

Trend graph page

- The trend graph page allows to show the changes in the time of one following measurements.
- voltages L1-N L2-N L3-N
- currents
- When the maximum storage capacity is exceeded, the newest data will overwrites the oldest, so that the most recent data is always shown.
- The vertical full scale is calculated automatically.

Bar graph page

The bar graph page allows to show of the following measurements:

- daily active and reactive powers
- active energy consumption (daily, weekly, monthly day by day and yearly), Imported and exported
- reactive energy consumption (daily, weekly, monthly day by day and yearly), Imported and exported
- The vertical full scale is calculated automatically.

Phasor diagram

- The phasor diagram shows voltages and currents in relation to each other. The voltages and currents that belong together are depicted in similar colours (red and orange L1, light-green and purple L2, light-blue and dark-blue L3). In this way, the phase angles can easily be assigned.
- The display shows:
- Voltages VL1, VL2, VL3
- Currents IL1, IL2, IL3
- Phase angle VL1-2, VL2-3, VL3-1
- Phase angle V-A L1, V-A L2, V-A L3

User pages

The user can create a maximum of 6 customized display pages.

- Each of these pages can view 6 measurements, freely chosen among the available readings of the EMA-11N.
- The title of the page can be freely programmed by the user, allowing, for instance, indicating the part of the plant supervised by the analyzer.
- The footer area of the page can be freely programmed by the user specified the title assigned to the function keys.
- The user pages are placed in a position that allows the reach them easily starting from the first pages, by pressing the keys.
- Like all other pages, it is possible to set the EMA-11N to return automatically to the user page after time has elapsed without keystrokes.

Data logger function

The data logger allows to store at regular intervals up to 14 variables chosen freely among the analyzer measures.

- Provide two type of data logger: generic and smart. The smart logger store instantaneous value, average value, maximum and minimum value.
- Every record is marked with a time stamp taken from the real-time clock. The minimum sampling period (distance between two records) is of 1 second.
- The recording can be continuous (driven by a regular time intervals) or conditional, driven by the status of one internal variable. It's possible to define starting/stopping of the recording.
- When the memory is full, the user can choose to stop the recording (END MEMORY mode) or to continue overwriting the oldest records (FIFO mode).
- The display page dedicated to the data logger status shows all the fundamental information, like number of measures, total records, available free memory, residual time before the memory is filled.

Logic expression

- It is possible to create max 8 internal variables named LE1...8, whose status depends on the combination of limit thresholds, inputs, measurements, etc.
- The operands can be combined each other with the following operators: sum, subtraction, multiplication, division.
- Every logic variable is the result of max 2 operands with 1 operations.
- The LOGIC EXPRESSION page displays, for every variable LE1...8, the status of the final result, that is the status of the selected Logic Expression.

Communication channels

- The EMA-11N supports a maximum of 2 communications protocols.
- The communication channels are completely independent, both for the hardware (physical interface) and for the communication protocol.
- The two channels can communicate at the same time.
- Type of communication:
- RS485 Modbus RTU
- Ethernet Modbus TCP
- Profibus DP
- M-Bus

Power factor convention

Power factor (PF) is the ratio of active power (P) to apparent power (S), and is a number between 0 and 1 . The meter shows positive or negative power factor according to standards.
The following diagrams show the correlation between KW, kVAR, PF, and inductive or capacitive loads for both the IEC, IEEE and SIGN standards.
The EMA-11N permits to select the power factor sign convention.

Display page navigation

Visualization and measures

Navigation STANDARD menu using $\leftarrow \rightarrow \uparrow \downarrow$ keys

Navigation SMART menu with footer area - specifies the functions assigned to the function keys.

	KEY 1	KEY 2	KEY 3	KEY 4	KEY 5	KEY 6
Voltage L-N	PREV.	Instantaneous waveform three-phase waveform V1-A1 waveform V2-A2 waveform V3-A3 THD crest factor	Harmonics 1* Harmonics 2* Harmonics 3* Harmonics table 1/4 * Harmonics table 2/4* Harmonics table 3/4* Harmonics table 4/4 *	Trend Min-Max relative Min-Max ABS AVG Max Demand	Analog Graph L1 Analog Graph L2 Analog Graph L3	NEXT
Voltage L-L	PREV.	Instantaneous waveform three-phase THD crest factor	Harmonics 12 * Harmonics 23 * Harmonics 31 * Harmonics table $1 / 4$ * Harmonics table 2/4 * Harmonics table 3/4 * Harmonics table 4/4 *	Min-Max relative	Min-Max ABS	NEXT
Current	PREV.	Instantaneous waveform three-phase waveform V1-A1 waveform V2-A2 waveform V3-A3 THD crest factor Load bars	Harmonics 1 * Harmonics 2* Harmonics 3* Harmonics table 1/4* Harmonics table 2/4* Harmonics table 3/4* Harmonics table 4/4 *	Trend Min-Max relative Min-Max ABS AVG Max Demand	Analog Graph 3PH Analog Graph L1 Analog Graph L2 Analog Graph L3	NEXT
Power Factor Cos Phi	PREV.	Instantaneous	Min-Max relative Min-Max ABS	AVG Max Demand	Analog Graph 3PH Analog Graph L1 Analog Graph L2 Analog Graph L3	NEXT
Tan Phi	PREV.	Instantaneous	Min-Max relative	Min-Max ABS Min-Max ABS	AVG Max Demand	NEXT
Active Power	PREV.	Instantaneous	Monday Tuesday Wednesday Thursday Friday Saturday Sunday	Min-Max relative Min-Max ABS AVG Max Demand	Analog Graph 3PH-mono Analog Graph L1-mono Analog Graph L2-mono Analog Graph L3-mono Analog Graph 3PH-bidi Analog Graph L1-bidi Analog Graph L2-bidi Analog Graph L3-bidi	NEXT
Reactive Power	PREV.	Instantaneous	Monday Sunday	Min-Max relative Min-Max ABS AVG Max Demand	Analog Graph 3PH-bidi Analog Graph L1-bidi Analog Graph L2-bidi Analog Graph L3-bidi	NEXT
Apparent Power Frequency	PREV.	Instantaneous	Min-Max relative	Min-Max ABS	AVG Max Demand	NEXT
Active Energy IN Active Energy OUT Reactive Energy IN Reactive Energy OUT	PREV.	$\begin{gathered} \hline \text { Actual } \\ \text { TB1 } \\ \ldots \\ \ldots \\ \text { TB16 } \\ \hline \end{gathered}$	DAY WEEK YEAR	MONTH 1 MONTH 12	MONTH 1 - D01-16 MONTH 1 - D17-31 MONTH 12 - D01-16 MONTH 12 - D17-31	NEXT
Reactive Energy Q	PREV.	$\begin{gathered} \text { Actual Q1 } \\ \text { TB1 } \\ \ldots \\ \text { TB16 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual Q2 } \\ \text { TB1 } \\ \ldots \\ \text { TB16 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual Q3 } \\ \text { TB1 } \\ \ldots \\ \text { TB16 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Actual Q4 } \\ \text { TB1 } \\ \ldots \\ \text { TB16 } \\ \hline \end{gathered}$	NEXT
Apparent Energy	PREV.	Instantaneous TB1 \ldots TB16	NET			NEXT

Measuring inputs

Current measurement
The device is designed for connection of current transformers with secondary currents of 1 A and 5 A . It is only possible to measure alternating currents. Optionally (during the order phase), Rogowski sensors can be used.

Voltage measurement
The EMA-11N with multi-range power supply is designed for measuring in systems with rated AC voltages to:

- 400 V phase-to-neutral
- 690 V phase-to-phase

Power supply
A supply voltage is required to operate the device. Please consult the technical data or the type plate for the type and level of the possible supply voltage. The EMA-11N can be supplied with an AC / DC multi-range power supply or a AC / DC extra-low voltage power supply:

- AC/DC multi-range power supply:

Supply by 90 to 250 VAC $\pm 10 \% / 50 / 60 \mathrm{~Hz}$ or
90 to 250 VDC $\pm 10 \%$.

- Extra-low voltage AC/DC power supply:

Supply by 20 to 60 VAC $\pm 10 \% / 50 / 60 \mathrm{~Hz}$ or 20 to 60 VDC $\pm 10 \%$.

CAUTION

Observe limit values

Failure to do so may result in damage to the device and the equipment.
The limits given in the technical data and on the type plate must not be exceeded even at startup or when testing the device.
If a supply voltage is applied that does not comply with the specifications on the type plate, this can result in malfunctioning and failure of the device.

Wiring settings

- Set wiring parameters according to the used wiring diagram. See wiring diagrams at the end of the manual.
- The Device status page allows to verify if the connection of the EMA-11N device has been executed properly.
- The wiring status page and phasor diagram allows to verify the following points:
- reading of the three phases
- voltage phases (angles between phases is different by 120°)
- reverse polarity of each CT
- mismatch between voltage and current phases
- If something not succeed, the display shows NOT CORRECT otherwise CORRECT

PARAMETERS MENU

Configuration

Setup \rightarrow General

PASSWORD	Range	Default
Level 1 [visual] If set to 0 , password is disabled and the access to	$0 \div 999999999$	0 (OFF)
Level 2 [setup] If set, value to be specified to get setup parameters	$0 \div 999999999$	0 (OFF)
Validity key [min] Keys enabling time after setup parameters access	$1 \div 60$	5
Keys protection When enabled, value to be specified to get setup p	YES / NO	NO
Communication protection When enabled, value to be specified before to send	YES / NO	NO
Enable options Special code value to enable software features (sw	$\begin{aligned} & 0 \div 999999999 \\ & \text { them) } \\ & \hline \end{aligned}$	0

RESET	Range	Default
Global All device parameters are resetted to factory default value	YES /NO	-
Default setup All setup parameters are resetted to factory default value	YES /NO	-
All energies Clears energy meters YES /NO - TB energies Clears tariff energy meters (excluded total energies) YES /NO - \mathbf{l}		

Counters Clears counters	YES / NO	-
TB counters Clears all counters timebands (excluded total counters).	YES / NO	-
Min-Max Reset of MIN and MAX of all readings	YES / NO	-
Max demand Reset of Max Demand of all readings	YES / NO	-
Log energies Clears all energy meters logs	YES / NO	-
Log setpoint Clears all alarm setpoint logs	YES / NO	-
All logs Clears all logs	YES / NO	-
ON/OFF events Clears all switching on / off device logs	YES / NO	-
Manual reset SP-DO Reset of the digital outputs used in setpoint menu	YES / NO	-

DATE / TIME	Range	Default
Hour	$0 \div 23$	-
Minute	$0 \div 59$	-
Seconds	$0 \div 59$	-
Day of week	Monday \div Sunday	-
Day	$1 \div 31$	-
Month	January \div December	-
Year	$2000 \div 2099$	-
UTILITY	Range	Default
Language	English / Italian / German / Polish / French / Swedish	English
Colour theme	blue-white ... gray-black	Blue-black
Text dimension	normal / big	Normal
Setpoint advice	YES / NO	NO
Page visualization If set Advanced, footer area - sp	the function keys	SMART

Measurements

Setup \rightarrow Measure
TRANSFORM RATIO
CT primary
CT primary winding rated current

MEASURE WINDOW	Range	Default
Upgrade time [min] $1 / 2 / 3 / 5 / 6 / 10 / 12 / 15 / 20 / 30 / 60 \quad 15$ The time used to calculate the average, maximum, minimum values and the expected power		
Type shifting / fixed		shifting
Fixed = Readings are integrated for the set time. Every time the integration time elapses, the Average value is updated with the result of the last integration Shifting = The values are integrated for a period time. Every time this interval elapses, the oldest value is replaced with the new one just calculated		

FREQUENCY	Range	Default
Fundamental [Hz]	$50 / 60 / 50$ (fixed) $/ 60$ (fixed)	50
System frequency network.		

DIP/SWELL	Range	Default
DIP threshold [[TV] Value under which the voltage must go down to be considered as an event $10000 \div 2000000000$		
$1 \div 10000$ DIP cycles $[1=10 \mathrm{~ms}]$ Time for which the voltage value must be above the set limit $[1=10 \mathrm{~ms} @ 50 \mathrm{~Hz}-1=8.33 \mathrm{~ms} @ 60 \mathrm{~Hz}]$		250
SWELL threshold [mV]	$10000 \div 2000000000$	270000
Value above which the voltage must rise to be considered as an event.		
SWELL cycles Time for which the voltage value	$1 \div 10000$	250
	Time for which the voltage value must be above the set limit. [$1=10 \mathrm{~ms} @ 50 \mathrm{~Hz}-1=8.33 \mathrm{~ms} @ 60 \mathrm{~Hz}]$	
Interruptions [mV]	$10000 \div 2000000000$	205000
Hysteresis interruptions [mV]	$10000 \div 2000000000$	215000
Storage	FIFO	End memory
	When the memory is full, the user can choose to stop the recording (End memory mode) or to continue overwriting the oldest records (FIFO mode)	

WIRING / CONVENTION	Range	Default
Wiring	3 phases [40 3 wires]	3 phases [403 wires]
See the wiring table	Balanced 3 wires	
4° inputs current On this item appears Measured if the CT is pre	Measured / Computed / Differential CT is not present. The user can chan	Measured
Power factor convention See the following picture for details on the select	SIGN / IEC / IEEE	SIGN
Setpoint timing Checking time for setpoint	$1 \mathrm{~s} / 0,1 \mathrm{~s}$	1 s
Rogowski full scale Full scale range value for Rogowski coil sensor	$175 \mathrm{mV} / 350 \mathrm{mV}$ / 700 mV	350 mV

Energies and Counters

Setup \rightarrow Measure \rightarrow Energies/Counters

PRELOAD ENERGY	Range	Default
$\Sigma W h$ IN $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
$\Sigma W h$ OUT $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
Σ VArh IN $[1=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
Σ VArh OUT $[1=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
Σ VAh $[1=0.1 \mathrm{kAh}]$	$0 \div 1000000000$	0
Wh IN L1 $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
Wh OUT L1 $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
VArh IN L1 $[1=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
VArh OUT L1 $[1=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
VAh L1 $11=0.1 \mathrm{kAh}]$	$0 \div 1000000000$	0
Wh IN L2 $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
Wh OUT L2 $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
VArh IN L2 $[1=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
VArh OUT L2 $21=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
VAh L2 $[1=0.1 \mathrm{kAh}]$	$0 \div 1000000000$	0
Wh IN L3 $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
Wh OUT L3 $[1=0.1 \mathrm{kWh}]$	$0 \div 1000000000$	0
VArh IN L3 $[1=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
VArh OUT L3 $[1=0.1 \mathrm{kVArh}]$	$0 \div 1000000000$	0
VAh L3 $[1=0.1 \mathrm{kVAh}]$	$0 \div 1000000000$	0

MODE [TIMEBAND]	Range	Default
Energy changing	manual / from DI / preset	manual
Timeband switching:		
- Manual		
- From DI: the combination of digital inputs selects the actual timeband (TB) used (see the following table)		
- Preset (see timeband Daily and Period plan for more information)		manual / from DI
Counter changing		
It's possible to select the modality for change the timeband:		
- Manual.		

DI4	DI3	DI2	DI1	TB	DI4	DI3	DI2	DI1	TB	DI4	DI3	DI2	DI1	TB	DI4	D13	DI2	DI1	TB
0	0	0	0	1	0	1	0	0	5	1	0	0	0	9	1	1	0	0	13
0	0	0	1	2	0	1	0	1	6	1	0	0	1	10	1	1	0	1	14
0	0	1	0	3	0	1	1	0	7	1	0	1	0	11	1	1	1	0	15
0	0	1	1	4	0	1	1	1	8	1	0	1	1	12	1	1	1	1	16

PERIOD PLAN (from 1 to 16)	Range	Default
Enable	yes/no	no
Enable or disable the plan. WARNING: Set all the following parameters before to enable it.		
Start Month Month at which the period start.	January - December	January
Start Day	$1 \div 31$	1
Day at which the period start.		
End Month	January \div December	December
Month at which the period finish.		
End Day	$1 \div 31$	31
Day at which the period finish.		

Monday Plan Plan used for this day.	Plan $1 \div$ Plan 16	Plan 1
................		
Sunday Plan	Plan $1 \div$ Plan 16	Plan 1
Plan used for this day.		
Holiday	Range	Default
Month holiday 1	January \div December	January
Day holiday 1	$1 \div 31$	1
Plan holiday 1	--- \div plan 16	---
Plan used for this holiday. When the plane setting is different from --- the Holiday Plan is enabled.		
...................		
Month holiday 48	January \div December	January
Day holiday 48	$1 \div 31$	1
Plan holiday 48	--- \div plan 16	---
Plan used for this holiday. When the plane setting is different from --- the Holiday Plan is enabled.		

User pages

Setup \rightarrow User page

		Range	Default
User page 1	instant / averages / energies / setpoint	instant	
User page 2	instant / averages / energies / setpoint	instant	
User page 3	instant / averages / energies / setpoint	instant	
User page 4	instant / averages / energies / setpoint	instant	
User page 5	instant / averages / energies / setpoint	instant	
User page 6	instant / averages / energies / setpoint	instant	

USER PAGE X (from 1 to 6)	Range	Default
Row 1	If the type is: instant \rightarrow see Acronym table of Instantaneous group averages \rightarrow see Acronym table of Averages group energies \rightarrow see Acronym table of Energy group setpoint $\rightarrow 1 \div 32$	---
Selection of the measure displayed on the 1 1st row of the user page X .		
Selection of the measure displayed on the $2^{\text {nd }}$ row of the user page X.		
Row 3 Selection of the measure displayed on the	X. See Row 1	---
Row 4 Selection of the measure displayed on th	gre X See Row 1	---
Selection of the measure displayed on the $5^{\text {th }}$ row of the user page X .		
Row 6 Selection of the measure displayed on the	g. See Row 1	---

EDIT TITLES	Range	Default
Title of user page $\mathbf{1}$	--	VOLTAGES
Title of user page $\mathbf{2}$	--	PHASE - PHASE
Title of user page 3	--	CURRENTS
Title of user page 4	--	POWER FACTOR
Title of user page 5	---	ACTIVE POWER
Title of user page $\mathbf{6}$	--	REACTIVE POWER

EDIT KEYS TEXTS	Range	Default
Key ${ }^{\circ} 1$	---	L-N
Key ${ }^{\circ} 2$	---	L-L
Key $\mathrm{n}^{\circ} 3$	---	A
Key $\mathrm{n}^{\circ} 4$	---	P.F.
Key $\mathrm{n}^{\circ} 5$	---	W
Key ${ }^{\circ} 6$	---	VAr

Communication

Setup \rightarrow Communication
COMn ($\mathrm{n}=1$ and $\mathrm{n}=2$)
Mode

MENU AVAILABLE ONLY FOR MASTER MODE SELECTION

MENU AVAILABLE IF PROFIBUS PORT IS AVAILABLE

PROFIBUS	Range	Default
Address [profibus node]	$1 \div 126$	1

MENU AVAILABLE IF ETHERNET PORT IS AVAILABLE

ETHERNET	MENU AVAILABLE IF ETHERNET PORT IS AVAILABLE	
	Range	Default
IP address	$0.0 .0 .0 \div \div 55.255 .255 .255$	10.0 .0 .100
Subnet mask	$0.0 .0 .0 \div 255.255 .255 .255$	255.0 .0 .0
IP gateway	$0.0 .0 .0 \div 255.255 .255 .255$	10.0 .0 .254
Port TCP \#1	$0 \div 65535$	502
Port TCP \#2	$0 \div 65535$	503
DHCP	enable or disable	disable
Timeout [s]	$10 \div 100000$	4200

MENU AVAILABLE IF M-BUS PORT IS AVAILABLE

M-BUS	Range	Default
Node [address MBUS]	$1 \div 250$	1
Baudrate [kbit/s]	$300 / 600 / 1200 / 2400 / 4800 / 9600 / 19200 / 38400$	2400
Stop bits	1/2 stop bit	1 stop
Data format	8-None / 8-Odd / 8-Even	8-Even
Min. response delay [ms] Modify this value if use a slow external converter.	$5 \div 100$	35

M-BUS FRAME A	Range	Default
Group 1 Group of the $1^{\text {st }}$ measure read.	See Acronym Group table	Energies
Measure 1 ${ }^{\text {tst }}$ measure read	See acronym in the table of the group selected	EWh IN
.................		
Group 18 Group of the $18^{\text {th }}$ measure read.	See Acronym Group table	not used

M-BUS FRAME B	Range	Default
Group 1 Group of the $1^{\text {st }}$ measure read.	See Acronym Group table	Instantaneous
Measure 1 ${ }^{\text {st }}$ measure read	See acronym in the table of the group selected	V1
..............		
Group 18 Group of the $18^{\text {th }}$ measure read.	See Acronym Group table	not used
Measure 18 $18^{\text {th }}$ measure read.	See acronym in the table of the group selected	not used

Factoy setting frame A	Group	Measure
1	Energies	EWh IN
2	Energies	Σ VArh \mathbb{N}
3	Instantaneous	W
$4 \div 18$	not used	not used

Factory setting frame B	Group	Measure
1	Instantaneous	V1
2	Instantaneous	V2
3	Instantaneous	V3
4	Instantaneous	A1
5	Instantaneous	A2
6	Instantaneous	A3
$7 \div 18$	not used	not used

I/O

Setup \rightarrow I/O

Alarm setpoint

Setup \rightarrow Setpoint

SETPOINT ($\mathrm{n}=1 \ldots 32$)	Range	Default
Enable Yes / No No Enable or disable the setpoint function. No		
Source Internal measures / Measures node X Internal measures Select the instrument from which the measure to analyze it will be read.		
See Acronyms Group tableGelection of the group for the actual setpoint if it is set Internal measures as Source.		
Item	See acronym in the table of the group selected	---
Selection of the measure in the selected Measure Group of the actual setpoint.		
High threshold	± 9999	0
The Action is executed if the measure exceed the set value.		
High threshold unit See below See below underlined		
With Measure node \mathbf{X} as Source, the multiplier factor will be $1,1000,1000000$ while with Internal measures there will be:		
Voltage: mV -V-kV-MV \quad Reactive power: VAr-kVAr-MVAr-GVAr ${ }^{\text {a }}$ Angle: degree*10		
Current: $\frac{\text { MA-A-kA-MA }}{}$	Frequency: mHz Apparent energy:	Apparent energy: VAh* $100-\mathrm{kVAh}-\mathrm{MVAh}-\mathrm{GVAh}$
	Temperature: ${ }^{\circ} \mathrm{C}$ Active energy: Wh	Active energy: Wh*100-kWh-MWh-GWh
Active power: $\underline{\underline{W}-\mathrm{kW}}$-MW-GW	THD and harmonics: $\%$ *100 Reactive energy:	Reactive energy: VArh*100-kVArh-MVArh-GVArh
Low thresholdThe Action is executed if the measure is lower than the set value.		0
Low threshold unit See belowSee the description of High threshold unit.		See below underlined
Over debounce [seconds] $0 \div 10000$ 0 : instantaneous execution of the Action $1 \div 10000$: execution of the Action if the condition is kept for the time set		0
Entry debounce [seconds]	$0 \div 10000$	0
0 : instantaneous execution of the Action		
$1 \div 10000$: execution of the Action if the condition is kept for the time set		
Hysteresis (for high \& low threshold)Setting a value different by 0 , the hystere	See below	0
	is enabled with a percentage value set.	
Logic operation over	See below	no logic
- No logic: the Action is executed without to verify the status of others setpoint [Default].		
- OR logic: the Action is execute after the check of result of the OR logic operation with the setpoint selected in operands. - AND logic: the Action is execute after the check of result of the AND logic operation with the setpoint selected in operands.		
WARNING: it's not possible to set OR logic for logic operation over and logic operation entry at the same time.		
Logic operation entry	See below	no logic
- No logic: the Action is executed without to verify the status of others setpoint [Default].		
- OR logic: the Action is execute after the check of result of the OR logic operation with the setpoint selected in operands.		
- AND logic: the Action is execute after	check of result of the AND logic operation with the setpoint selected in	
WARNING: it's not possible to set OR logic for logic operation over and logic operation entry at the same time.		
Operands (1-16)	See below	No Operands
Setpoint 1: select Yes to include the setpoint 01 in the logic.		
Setpoint 16: select Yes to include the setpoint 16 in the logic.		
Operands (17-32)	See below	No Operands

Setpoint 17: select Yes to include the setpoint 17 in the logic.
Setpoint 32: select Yes to include the setpoint 32 in the logic.

Action over See below

It possible to select one, more or anything action:

- Display and save the event. - Increase a variable that indicates the number of events.
- Change the DO-X state. - Increase a variable that indicates the duration time of the event

Action entry	See below	None	
It possible to select one, more or anything action:	- Change the DO-X state	See below	
Display and save the event.	None		
DO used			

It possible to select (with Yes) one or more DO: DO-1, DO-2, DO-3, DO-4, DO-5, DO-6, DO-7, DO-8.
WARNING: for a correct functioning before to select the output it's necessary to set the SETPOINT mode under the item MODE in the setup page of the DO group (DO-1, 2, 3, 4 or DO-5, 6, 7, 8),

Data logger function

Setup \rightarrow Log

GENERICLOG	Range	Default
Enable $\text { none } \div \text { trigger }$ Before enabling the log function, it is necessary to disable the other enabled logs. Only one type of log can be used at a time How to use: - always: the log is active immediately after setting; - in the period: the log is active (on the selected days of the week) in the selected period only (month and day); - in the timetable: the log is active (on the selected days of the week) in the set time; - in the period and in the timetable: the log is active (on the selected days of the week) in the selected period and time; - trigger: the \log is active when the status set is verified;		none
Sampling Acquisition timing.	$1 \mathrm{sec} / . . / 60 \mathrm{~min} / \mathrm{end}$ of day/end of week/end of month/end of year	15 min
Type of storage. Note: FIFO after 10 consecutive cycles is automatically disabled.		
Start month	January \div December	January
Start day	$1 \div 31$	1
Start hour	$0 \div 23$	0
Start minute	$0 \div 59$	0
End month	January \div December	January
End day	$1 \div 31$	1
End hour	$0 \div 23$	23
End minute	$0 \div 59$	59
Monday Enable or disable the log for this day.	yes / no	no
.................		
Saturday Enable or disable the log for this day.	yes / no	no
Trigger input Input that triggers the log.	DI high level, DI low level, Setpoint	DI high level
Dl used Digital input used for the trigger input.	$1 \div 8$	1
Setpoint used Setpoint used for the trigger input.	$1 \div 32$	1
Source 1 Source select of the $1^{\text {st }}$ measure sampled	internal measure / measure node x	internal measure
Group 1 Group select of the $1^{\text {st }}$ measure sampled	See Acronym Group table	---
Measure 1 Measure select of the $1^{\text {st }}$ measure sampled		
..................		
Source 14 Source select of the $14^{\text {th }}$ measure sampled	internal measure / measure node x	internal measure
Group 14 Group select of the $14^{\text {th }}$ measure sampled	See Acronym Group table	---
Measure 14 Measure select of the $14^{\text {th }}$ measure sampled		

Warning: All recordings for all log will be lost if any parameter is changed.

Wiring connection

(1) Three-phase measuring, four conductors, unbalanced load, without voltage transformers, with current transformers.

Connection type 3PH-4W

(3) Three-phase measuring, three conductors, unbalanced load, with voltage transformers, with two current transformers. (ARON)

Connection type ARON

(5) Single-phase measuring, two conductors, without voltage transformers, with one current transformer.

Connection type 1PH

(2) Three-phase measuring, three conductors, unbalanced load, without voltage transformers, with two current transformers. (ARON)

Connection type ARON

(4) Three-phase measuring, three conductors, balanced load, without voltage transformers, with one current transformer.

Connection type 3PH BAL

(6) Three-phase measuring, four conductors, balanced multiple loads, with three current transformers.

Connection type 3PH ML BAL

(7) Single-phase measuring, two conductors, without voltage transformers, with one current transformer.

Connection type 1PH ML

N (n) \qquad
(9) Single-phase measuring, two conductors, with voltage transformers, with three current transformer.

Connection type 3X1PH

(8) Two-phase measuring, three conductors, unbalanced loads, without voltage transformers with two current transformers.

Connection type 2PH 3W

		$\begin{aligned} & \text { Z } \\ & \text { o } \\ & \frac{\gamma}{4} \end{aligned}$	$\begin{aligned} & \otimes \text { O } \\ & \stackrel{U}{0} \\ & \stackrel{0}{1} \stackrel{0}{\pi} \\ & \text { ले } \end{aligned}$		$\begin{aligned} & \frac{d}{0} \stackrel{0}{\infty} \\ & \cdot \frac{0}{\infty} \frac{0}{2} \end{aligned}$		$\begin{aligned} & \text { 픟 } \frac{\dot{0}}{\bar{O}} \\ & \text { 퉁 } \end{aligned}$	
SYSTEM VOLTAGE	\bullet	\bullet	\bullet	-				
PHASE VOLTAGE L1-N	\bullet	-						
PHASE VOLTAGE L2-N	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet
PHASE VOLTAGE L3-N	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	
LINE TO LINE VOLTAGE L1-2	\bullet	\bullet	\bullet	\bullet				
LINE TO LINE VOLTAGE L2-3	\bullet	\bullet	\bullet	\bullet				
LINE TO LINE VOLTAGE L3-1	\bullet	\bullet	\bullet	\bullet				
SYSTEM CURRENT	\bullet	\bullet	calculated	\bullet				
LINE CURRENT L1	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
LINE CURRENT L L_{2}	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
LINE CURRENT L3	\bullet	\bullet	calculated	x3		\bullet	\bullet	
SYSTEM POWER FACTOR	\bullet	\bullet	calculated	\bullet				
POWER FACTOR L_{1}	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet
POWER FACTOR L2	\bullet	\bullet	calculated	\bullet		\bullet	\bullet	\bullet
POWER FACTOR L3	\bullet	\bullet	calculated	-		\bullet	\bullet	
SYSTEM COS φ	\bullet	\bullet	calculated	\bullet				
PHASE COS φ_{1}	\bullet							
PHASE $\operatorname{COS~} \varphi_{2}$	\bullet	\bullet	calculated	\bullet		\bullet	\bullet	\bullet
PHASE $\operatorname{COS~} \varphi_{3}$	\bullet	\bullet	calculated	\bullet		\bullet	\bullet	
SYSTEM APPARENT POWER	\bullet	\bullet	calculated	\bullet				
APPARENT POWER L ${ }_{1}$	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
APPARENT POWER L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
APPARENT POWER L ${ }_{3}$	\bullet	\bullet	calculated	x3		\bullet	\bullet	
SYSTEM ACTIVE POWER	\bullet	\bullet	calculated	\bullet				
ACTIVE POWER L ${ }_{1}$	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
ACTIVE POWER L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
ACTIVE POWER L3	\bullet	\bullet	calculated	x3		\bullet	\bullet	
SYSTEM REACTIVE POWER	\bullet	\bullet	calculated	\bullet				
REACTIVE POWER L1	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
REACTIVE POWER L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
REACTIVE POWER L3	\bullet	\bullet	calculated	x3		\bullet	\bullet	
NEUTRAL CURRENT	calculated or measured (option)							
THD VOLTAGE L1	\bullet							
THD VOLTAGE L2	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	\bullet
THD VOLTAGE L3	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet	
THD CURRENT L_{1}	\bullet							
THD CURRENT L2	\bullet	\bullet	calculated	\bullet		\bullet	\bullet	\bullet
THD CURRENT L3	\bullet	\bullet	calculated	\bullet		\bullet	\bullet	
ANGLE 1-2	\bullet							
ANGLE $2-3$	\bullet							
ANGLE $3-1$	\bullet							
SYSTEM TANGENT φ	\bullet	\bullet	calculated	\bullet				
PHASE TANGENT φ_{1}	\bullet							
PHASE TANGENT φ_{2}	\bullet	\bullet	calculated	\bullet		\bullet	\bullet	\bullet
PHASE TANGENT φ_{3}	\bullet	\bullet	calculated	\bullet		\bullet	\bullet	
SYSTEM ACTIVE ENERGY IN	\bullet	\bullet	calculated	x3	\bullet	\bullet	\bullet	\bullet
SYSTEM ACTIVE ENERGY OUT	\bullet	\bullet	calculated	x3	\bullet	\bullet	\bullet	\bullet
SYSTEM REACTIVE ENERGY IN	\bullet	\bullet	calculated	x3	\bullet	\bullet	\bullet	\bullet
SYSTEM REACTIVE ENERGY OUT	\bullet	\bullet	calculated	x3	\bullet	\bullet	\bullet	\bullet
SYSTEM APPARENT ENERGY	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
ACTIVE ENERGY IN L ${ }_{1}$	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
ACTIVE ENERGY OUT L1	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
REACTIVE ENERGY IN L1	\bullet	\bullet	\bullet	x3	-	\bullet	\bullet	\bullet
REACTIVE ENERGY OUT L ${ }_{1}$	\bullet	\bullet	\bullet	x3	\bullet	\bullet	\bullet	\bullet
APPARENT ENERGY L_{1}	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
ACTIVE ENERGY IN L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
ACTIVE ENERGY OUT L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
REACTIVE ENERGY IN L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
REACTIVE ENERGY OUT L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
REACTIVE ENERGY OUT L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	\bullet
APPARENT ENERGY L2	\bullet	\bullet	calculated	x3		\bullet	\bullet	
ACTIVE ENERGY IN L3	\bullet	\bullet	calculated	x3		\bullet	\bullet	

ACTIVE ENERGY OUT L_{3}	\bullet	\bullet	calculated	x3		\bullet	\bullet
REACTIVE ENERGY IN L3	\bullet	\bullet	calculated	x3			\bullet
REACTIVE ENERGY OUT L_{3}	\bullet	\bullet	calculated	$x 3$		\bullet	\bullet

Mechanical dimensions (mm)

Appendix 1

Acronyms group table

Acronym
Instantaneous
Average
Energies
Setpoint

Acronyms table of Instantaneous group	
Acronym	Description
ᄃV	System Voltage
V1	Voltage L1
V2	Voltage L2
V3	Voltage L3
V1-V2	L1-L2 Voltage
V2-V3	L2-L3 Voltage
V3-V1	L3-L1 Voltage
£A	System Current
A1	Current L1
A2	Current L2
A3	Current L3
EPF	System Power Factor
PF1	Power Factor L1
PF2	Power Factor L2
PF3	Power Factor L3
¿COS	System COS
COS1	COS L1
COS2	COS L2
COS3	COS L3

Acronym	Description
IVA	System Apparent Power
VA1	Apparent Power L1
VA2	Apparent Power L2
VA3	Apparent Power L3
EW	System Active Power
W1	Active Power L1
W2	Active Power L2
W3	Active Power L3
टVar	System Reactive Power
Var1	Reactive Power L1
Var2	Reactive Power L2
Var3	Reactive Power L3
4° A	4th Current Input
FREQ	Frequency
INT TEMP	internal temperature
THD V1	THD Voltage L1
THD V2	THD Voltage L2
THD V3	THD Voltage L3
THD A1	THD Current L1

Acronym	
THD A2	Description
THD A3	THD Current L2
DEG V1-V2	Phase Angle L1-L2
DEG V2-V3	Phase Angle L2-L3
DEG V3-V1	Phase Angle L3-L1
इTAN	System Tangent
TAN1	Tangent L1
TAN2	Tangent L2
TAN3	Tangent L3
टEXP W	System Expected Power
EXP W1	Expected Power L1
EXP W2	Expected Power L2
EXP W3	Expected Power L3
DEG V-A 1	Phase Angle V1-A1
DEG V-A 2	Phase Angle V2-A2
DEG V-A 3	Phase Angle V3-A3

Acronyms table of Average group

Acronym	Description
AVG IV	System Average Voltage
AVG V1	Average Voltage Phase 1
AVG V2	Average Voltage Phase 2
AVG V3	Average Voltage Phase 3
AVG IA	System Average Current
AVG A1	Average Current L1
AVG A2	Average Current L2
AVG A3	Average Current L3
AVG इPF	System Average Power Factor
AVG PF1	Average Power Factor L1
AVG PF2	Average Power Factor L2
AVG PF3	Average Power Factor L3

Acronym	Description
AVG ECOS	Average COS L1
AVG COS1	Average COS L2
AVG COS2	Average COS L3
AVG-COS3	System Average Apparent Power
AVG इVA	Average Apparent Power L1
AVG VA1	Average Apparent Power L2
AVG VA2	Average Apparent Power L3
AVG VA3	System Average Active Power
AVG इW	Average Active Power L1
AVG W1	Average Active Power L2
AVG W2	Average Active Power L3
AVG W3	Average COS L1

Acronym	Description
AVG Σ VAr	System Average Reactive Power
AVG VAr1	Average Reactive Power L1
AVG VAr2	Average Reactive Power L2
AVG VAr3	Average Reactive Power L3
AVG 4 ${ }^{\circ}$ A	$4^{\text {th }}$ Current Input
AVG Hz	Average Frequency
AVG इTAN	Average System Tan
AVG TAN1	Average Tangent L1
AVG TAN2	Average Tangent L2
AVG TAN3	Average Tangent L3

Acronyms table of Energies and TB (from 1 to 16)

Acronym	Description
$\Sigma W h$ IN	System Active Energy IN
$\Sigma W h$ OUT	System Active Energy OUT
Σ VArh IN	System Reactive Energy IN
Σ VArh OUT	System Reactive Energy OUT
Σ VAh	System Apparent Energy
Wh IN 1	Active Energy L1 IN
Wh OUT 1	Active Energy L1 OUT

groups	
Acronym	Description
VArh IN 1	Reactive Energy L1 IN
VArh OUT 1	Reactive Energy L1 OUT
VAh 1	Apparent Energy L1
Wh IN 2	Active Energy L2 IN
Wh OUT 2	Active Energy L2 OUT
VArh IN 2	Reactive Energy L2 IN
VArh OUT 2	Reactive Energy L2 OUT

Acronym	Description
VAh 2	Apparent Energy L2
Wh IN 3	Active Energy L3 IN
Wh OUT 3	Active Energy L3 OUT
VArh IN 3	Reactive Energy L3 IN
VArh OUT 3	Reactive Energy L3 OUT
VAh 3	Apparent Energy L3

Technical characteristics

Auxiliary supply	
Voltage range	$\begin{aligned} & 90 \div 250 \mathrm{VAC} / \mathrm{DC} \\ & 20 \div 60 \mathrm{VAC} / 24 \div 85 \mathrm{VDC} \end{aligned}$
Frequency	$50 / 60 \mathrm{~Hz}$
Protection fuse	$5 \times 20 \mathrm{~mm}-1 \mathrm{~A}$ time lag (option $90 \div 250 \mathrm{VAC} / \mathrm{DC}$) $5 \times 20 \mathrm{~mm}-3.15 \mathrm{~A}$ time lag (option $20 \div 60 \mathrm{VAC} / \mathrm{DC}$)
Power consumption	10 VA max - 3 VA min
Measurement accuracy	
Active energy	IEC62053-21 - Class 1 (1\%) IEC62053-22 - Class 0.5 s (optional) IEC 62053-22 - Class 0.2 s (optional)
Frequency	$40 \div 70 \mathrm{~Hz}$
Power factor	± 1.000
$\operatorname{Cos} \varphi$	± 1.000
Tan¢ φ	$\pm \tan 89.9^{\circ}$
THD	IEC62053-22 compliant
Harmonics	up to 63'd Harmonics - IEC62053-22
Refresh rate	$\sim 200 \mathrm{~ms}$
Voltage inputs	
Type of input	Three phase + Neutral
Measurement range	$\begin{aligned} & 30 \div 400 \text { VAC L-N } \\ & 52 \div 693 \text { VAC L-L } \end{aligned}$
Frequency range	$50-60 \mathrm{~Hz}$ Note: V1 terminal must be connected
Method of measuring	True RMS value
Over-voltage	480 VAC L-N 830 VAC L-L Over-voltage category: III
Input resistance	$>1.8 \mathrm{M} \Omega$
Burden	0.12 VA for each input
Current inputs	
Rated current	1 A or 5 A Rogowski coil sensors (optional)
Measurement range	for 1 A scale: $10 \mathrm{~mA} \div 1 \mathrm{~A}$ for 5 A scale: $50 \mathrm{~mA} \div 5 \mathrm{~A}$
Type of input	Isolated inputs by internal CT
Method of measuring	True RMS value
Overload peak	for 1 A scale: 1.3 A for 5 A scale: 6.5 A
Burden	0.001 VAmax for each input
Digital output	
Number	2
Type	Photo-MOS (solid state); Ron $=8 \Omega$ typ. (12 2 MAX)
Range Voltage/Current	$10 \div 300$ VDC 150 mA max; $12 \div 250 \mathrm{~V}$ ca 150 mA max
Isolation voltage	4 KV per 60 sec .

Output functionality	Programmable output as pulse / status / alarm
Pulse duration	Ton_min 30ms, Toff_min 30 ms
Digital input	
Number	2
Input voltage range	Input rated voltage VInput 24, 48, 115, $230 \mathrm{Vac/dc}$ (only one defined in the order)
Input current	Rated input current linput @ Vinput: 5mAmax @ Vinput $=$ all voltages
Inputs configuration	2 terminals (A-K) for each input: NPN, PNP
Isolation voltage	3.5 kV for 60 sec .
Input filter	Digital
Pulse duration	Ton_min 30ms, Toff_min 30ms
Analog output	
Number of analog outputs	2 or 4
Auxiliary power supply	Not required
Insulation level	3.5 KV for 60 s
Maximum length of connection	1200 m
Resolution	12 bit (4096 values)
Analog outputs type	Current
Mode	$0 \div 20 \mathrm{~mA}$ or $4 \div 20 \mathrm{~mA}$
Load	Max 600Ω
Error	Max: 0.5\% on E.S. - Typical 0.2\% on E.S. Linearity: 0.01 on F.S. - Thermal stability: 0.01 on F.S.
Settling time	$50 \mu \mathrm{~s}(0 \div 20 \mathrm{~mA}) @ R \mathrm{LOAD}=1 \mathrm{~K}, \mathrm{C}_{\text {LIOAD }}=200 \mathrm{pF}, \mathrm{LLOAD}=1 \mathrm{mH}$
Communication RS485	
Number of ports	1 + 1 (optional)
Protocol	Modbus RTU
Standard	RS485 half-duplex with optical isolation
Baud rate	4800-9600-19200-38400-57600-115200 kbps
Parity	Even - Odd - None
Number of stop bits	1,2
Communication Profibus	
Protocol	Slave DP-V0
Baud rate	9.6 Kbits/s - $3 \mathrm{Mbits} / \mathrm{s}$
Node	0-126
Connector	DB9 female connector
Communication Ethernet	
Protocol	Modbus TCP
Connector	RJ45
Communication M-Bus	
Baud rate	0.3-0.6-1.2-2.4-4.8-9.6-19.2-38.4 kbps
Node	0-250
Parity	Even - Odd - None
Stop bit	1,2
Real-time clock	
Type	Quartz crystal based
Update	Through communication command and front keys
Retention (in absence of voltage)	7 days backup guaranteed
Data recording	
Memory	100 KB (standard) Maximum: 4 MB (optional)
Housing	
Version	144×144 mm
Degree of protection	IP50 on front IP20 housing and terminals
Weight	430 gr
Ambient conditions	
Operating temperature	$-10 \ldots+60^{\circ} \mathrm{C}$
Storing temperature	$-20 \ldots+70^{\circ} \mathrm{C}$
Relative humidity	5...95\%
Certifications and compliance	
Reference standards	$\begin{aligned} & \text { CEI EN 61000-6-2:2006 } \\ & \text { CEI EN 61000-6-4:2007 } \\ & \text { CEI EN 61010-1:2013 } \end{aligned}$

For further details please contact:

Contrel elettronica s.r.I.

Via San Fereolo, 9
I-26900 Lodi
Tel: +39 037130207 / 30761 / 35386

CEI EN 61000-6-4:2007
CEI EN 61010-1:2013

